
cartesi.io

Running
Linux in ZK
There are crazier things than the EVM to run in ZK

Carsten Munk - CTO @ Zippie, also a Board Director @ Cartesi Foundation - zkLinux is work
done under a public goods grant from the Cartesi Foundation. This talk was constructed in an
augmented intelligence fashion with ChatGPT (GPT-4), Midjourney and feedback from other
team members.

zkWarsaw Day
29 / 8 / 2023

cartesi.io

An open source RISC-V emulator implementing a fully deterministic
RV64GC ISA (read: runs unmodified Ubuntu)
— Written in C++, LGPL 3.0 licensed

— 64-bit memory addressability

— Developed since 2018 and still actively developed

— All machine state is in memory and can be merkle-ized at 64-bit
word level

— Can persist state at any step and resume execution

— Optimistically provable in a verification game manner

— IMNSHO: The ultimate runtime for ZK apps is a general purpose
ISA/processor that can run a full 64-bit OS

https://github.com/cartesi/machine-emulator

What is the Cartesi
Machine?

https://cartesi.io/cartesi_whitepaper.pdf

https://github.com/cartesi/machine-emulator

cartesi.io

The RISC Zero zkVM is a verifiable computer
that works like a real embedded RISC-V
micro-processor, enabling programmers to
write ZK proofs like they write any other code.
— Apache2 license and includes a full

proving and verification system.
— Supports Rust for writing ZK proofs. Any

language that compiles to RISC-V can
be supported.

— 32-bit RISC-V RV32IM ISA; ~192mb RAM
in guest

— Continuations enable not having to
worry about instruction count (splits
execution over multiple proofs)

— Recursion and STARK->SNARK->EVM
through online service (Bonsai)

— https://risczero.com

What is RiscZero?

https://risczero.com

cartesi.io

The game plan
— Proof: Execution from machine state X until C RV64GC cycles becomes

state Y
— Include sufficient amount of Cartesi Machine code into a RiscZero guest so

it can execute full RV64GC cycles
— Start up a real Cartesi Machine and RPC with it in the host to retrieve

memory + machine state hash at the starting cycle
— Have the host provide the memory contents in full at that step to the guest*

— Then see how many cycles we can fix in one RiscZero segment (proof)

— Then prove we iterated from initial machine state X with several iterating
proofs of execution between states, to a final state Y (recursable)

— Then prove from initial machine state X of a machine containing a Linux
kernel and root file system until halt of machine

— And then add memory commitments (machine started from state X and
we’re now in state Y after Z cycles) [not done yet]

cartesi.io

— Build Cartesi Machine for RV32IM ISA

— No libc, stdlib nor allocator - only stack. Cartesi Machine doesn’t need
allocation as all state is in the RAM of the machine (or static variables)

— Merge Cartesi Machine .o files into one .o with ‘ld -relocatable’ and use ‘cc’
Rust crate to bridge RiscZero guest code

— Export some symbols to the C++ code and import some

-

The simple part for an
embedded Linux engineer

cartesi.io

So how exactly do we fit a 64−bit address
space into a 32−bit guest?

cartesi.io

Paging on RISC-V TLB level!
— Cartesi Machine implements a TLB which all physical memory accesses are

resolved through on a page level
— Each TLB entry of 4K (page size) is given an offset between the physical

address in-machine and in-emulator to speed up accesses in futures
— Always dirty TLB and processor state pages

— Upon hitting a page we’ve not accessed before we would through
host-guest communication page/copy it in and commit to its original hash

— And then commit hashes of dirty pages in the guest upon completion

cartesi.io

It’s alive!

cartesi.io

— Ridiculously unoptimized: Around
2000-3000 RV64GC cycles per 2^20
RiscZero cycles (1 proof segment)
depending on a few factors

— 1 proof segment on GPU ~17 seconds
(execution of RV32IM included)

— 31 million RV64GC cycles for Linux
bootup ~=2 days on single GPU

— on 64 GPUs ~= 2744 seconds

— Future work: Upstream emulator
patches, Update to Risc0 0.17,
Predecoding, leveraging ‘hints’ from host
for more performant behaviour, proven
JIT to RV32IM of code pages, seeing
how many RV64GC cycles per 2^20
RiscZero we can get in, inspirations from
UTM (iOS). Specialized device drivers in
Linux for acceleration in custom ZK
circuits.

NAME OF THE SECTION

Performance

https://cartesi.io/cartesi_whitepaper.pdf

cartesi.io

— zkPHP

— zkDoom

— zkMongoDB

— zkMinecraft

— zkWindows ME

— zk-’cargo build’ (or anything)

— Start from an already ZK proven Linux boot and
replace memory areas (‘disks’) before root file
system is mounted and never have to re-compute
Linux boot again unless upgrading kernel

— Proof of exploit on anything we can execute in a
RISC-V Linux (this includes X86-64 emulators)

— Some parts of a Cartesi Machine execution public,
some parts private

Usecases

P11P11cartesi.io

Thanks.
Twitter/Telegram/Bluesky: @stskeeps
Further discussion: cartesi.io discord

Special thanks go to Yelyzaveta Dymchenko for
running the first cycles of a RV64GC using rvemu
on RiscZero in October 2022

https://github.com/stskeeps/poc-cartesi-r0

https://github.com/stskeeps/machine-emulato
r/tree/sts/experimental/risczero-uarch

https://github.com/stskeeps/poc-cartesi-r0
https://github.com/stskeeps/machine-emulator/tree/sts/experimental/risczero-uarch
https://github.com/stskeeps/machine-emulator/tree/sts/experimental/risczero-uarch

