wa cartesi

Running
Linuxin ZK

There are crazier things than the EVM to run in ZK

zkWarsaw Day

Carsten Munk - CTO @ Zippie, also a Board Director @ Cartesi Foundation - zkLinux is work
cartesi.io (@A[o]s) © 29 /8 /2023

done under a public goods grant from the Cartesi Foundation. This talk was constructed in an
augmented intelligence fashion with ChatGPT (GPT-4), Midjourney and feedback from other
team members.

wa cartesi

| | n
What is the Cartesi
" Table 2: The processor state. Memory-mapped to the lowest 512
M a C h I n e ? bytes in physical memory for external read-only access.
]

Offset State Offset State
An open source RISC-V emulator implementing a fully deterministic 0x000 x0 0x160 misa
RV64GC ISA (read: runs unmodified Ubuntu) 0x008 x1 0x168 mie
_ _ _ 0x170 mip
— Written in C++, LGPL 3.0 licensed 0x0f8 x31 0x178 medeleg
_ e o 0x100 pc 0x180 mideleg
64-bit memory addressability 0x108 mvendorid 0x188 mcounteren
— Developed since 2018 and still actively developed 0x110 marchid 0x190 stvec
0x118 mimplid 0x198 sscratch
— All machine state is in memory and can be merkle-ized at 64-bit 0x120 mcycle 0x1a0 sepc
word level 0x128 minstret 0x1a8 scause
0x130 mstatus 0x1b0 stval
— Can persist state at any step and resume execution 0x138 mtvec 0x1b8 satp
L . . . 0x140 mscratch 0x1cO0 scounteren
— Optimistically provable in a verification game manner 0x148 mepc Ox168: dlese!
. : : ; t
— IMNSHO: The ultimate runtime for ZK apps is a general purpose OxiBO: ‘meause Uxido: ‘iflegs

0x158
ISA/processor that can run a full 64-bit OS x158 mtval

"Cartesi-specific state.

https://github.com/cartesi/machine-emulator B _ _
cartesiio https://cartesi.io/cartesi_whitepaper.pdf

https://github.com/cartesi/machine-emulator

wa cartesi

Whatis RiscZero?

The RISC Zero zkVM is a verifiable computer
that works like a real embedded RISC-V
micro-processor, enabling programmers to
write ZK proofs like they write any other code.
— Apache? license and includes a full
proving and verification system.

— Supports Rust for writing ZK proofs. Any
language that compiles to RISC-V can
be supported.

— 32-bit RISC-V RV32IM ISA; ~192mb RAM
in guest

— Continuations enable not having to
worry about instruction count (splits
execution over multiple proofs)

— Recursion and STARK->SNARK->EVM
through online service (Bonsai)

— https://risczero.com

cartesi.io

#![no_main]
#![no_std]

use risc@_zkvm::guest::env;

risc@_zkvm::gquest::entry!(main);

pub fn main() {
/ Load the first number from the host
let a: ubd4 = env::read();
/ Load the second number from the host
let b: u64 = env::read();

// Verify that neither of them are 1 (i.e. nontrivial factors)

ifa=1 || b==1{
panic!("Trivial factors")

// Compute the product while being careful with integer overf

let product = a.checked_mul(b).expect("Integer overflow");
env::commit(&product);

Low

https://risczero.com

wa cartesi

The game plan

cartesi.io

Proof: Execution from machine state X until C RV64GC cycles becomes
state Y

Include sufficient amount of Cartesi Machine code into a RiscZero guest so
it can execute full RV64GC cycles

Start up a real Cartesi Machine and RPC with it in the host to retrieve
memory + machine state hash at the starting cycle

Have the host provide the memory contents in full at that step to the guest*
Then see how many cycles we can fix in one RiscZero segment (proof)

Then prove we iterated from initial machine state X with several iterating
proofs of execution between states, to a final state Y (recursable)

Then prove from initial machine state X of a machine containing a Linux
kernel and root file system until halt of machine

And then add memory commitments (machine started from state X and
we're now in state Y after Z cycles) [not done yet]

L a
= 8
= : i
. = PN 5 B :
: . _mm———
4 H % L A R R .

it :
gtf,

The simple part for an
embedded Linux engineer

— Build Cartesi Machine for RV32IM ISA

— No libc, stdlib nor allocator - only stack. Cartesi Machine doesn’t need
allocation as all state is in the RAM of the machine (or static variables)

— Merge Cartesi Machine .o files into one .0 with ‘Id -relocatable’ and use ‘cc’
Rust crate to bridge RiscZero guest code

— Export some symbols to the C++ code and import some

[no_mangle]
pub extern "C" fn printout(c_string: xconst c_char) {

let s = unsafe { CStr::from_ptr(c_string).to_string_lossy().into_owned() };
println!("printout: <{:?}>", s);

by

extern {
fn run_uarch(mcycle_begin: u64, mcycle_end: u6d4) -> ub4;

wa cartesi

So how exactly do we fit a 64-bit address
space |nto a 32-bit guesgt_?

cartesi.io

wa cartesi

Pagingon RISC-V TLB level!

cartesi.io

Cartesi Machine implements a TLB which all physical memory accesses are
resolved through on a page level

Each TLB entry of 4K (page size) is given an offset between the physical
address in-machine and in-emulator to speed up accesses in futures

Always dirty TLB and processor state pages

Upon hitting a page we’ve not accessed before we would through
host-guest communication page/copy it in and commit to its original hash

And then commit hashes of dirty pages in the guest upon completion

wa cartesi

It’s alive!

~-> host/src/main.rs:23:20

|
23 | use sha2::{Sha256, Digest};
| G

warning: ‘host’ (bin "host") generated 6 warnings (run ‘cargo fix ——bin "host"' to apply 5 suggestions)
Finished release [optimized + debuginfo] target(s) in 58.70s

warning: the following packages contain code that will be rejected by a future version of Rust: rstest v0.11.0

note: to see what the problems were, use the option ‘--future-incompat-report’, or run ‘cargo report future-incompatibilities —id 1°
Running "target/release/host 'http://127.0.0.1:50051'"

starting at mcycle 7200000

. mcycle 7200000 total segments this session @

tty: [0.000000] Linux version 5.15.63-ctsi-2 (

tty: developer@buildkitsandbox) (riscvé4-cartesi-linux-gnu-gc

tty: ¢ (crosstool-NG 1.24.0.199_dd20@ee5) 10.2.0, GNU 1d (cross

tty: tool-NG 1.24.0.199_dd2@ee5) 2.35.1) #1 Thu Mar 30 12:58:

tty: 59 UTC 2023

[0.000000] OF: fdt: Ignorin

!ity: g memory range 9x80000000 - 0x80200000

tty: 0.000000] Machine model: ucbbar,riscvemu-bare

tty: [0.000000] Zone ranges:

[0.000

tty: 000] DMA32 [mem 8x0000000080200000-0x0000000083fefff
. mcycle 7300000 total segments this session 54

tty: f]

[0.000000] Normal empty

tty: [0.000000] Movable zone start for each node
tty: [©.000000] Early memory node ranges
tty: [0.000000] node @: [mem 0x000200008020000

tty: 0-0x0000000083feffff]
[0.000000] Initme

wa cartesi NAME OF THE SECTION

Performance

cartesi.io

Ridiculously unoptimized: Around
2000-3000 RV64GC cycles per 2720
RiscZero cycles (1 proof segment)
depending on a few factors

1 proof segment on GPU ~17 seconds
(execution of RV32IM included)

31 million RV64GC cycles for Linux
bootup ~=2 days on single GPU

on 64 GPUs ~= 2744 seconds

Future work: Upstream emulator
patches, Update to RiscO 0.17,
Predecoding, leveraging ‘hints’ from host
for more performant behaviour, proven
JIT to RV32IM of code pages, seeing
how many RV64GC cycles per 2*20
RiscZero we can get in, inspirations from
UTM (iOS). Specialized device drivers in
Linux for acceleration in custom ZK
circuits.

https://cartesi.io/cartesi whitepaper.pdf

wa cartesi

Usecases

cartesi.io

zkPHP

zkDoom

zkMongoDB

zkMinecraft

zkWindows ME

zk-"cargo build’ (or anything)

Start from an already ZK proven Linux boot and
replace memory areas (‘disks’) before root file

system is mounted and never have to re-compute
Linux boot again unless upgrading kernel

Proof of exploit on anything we can execute in a
RISC-V Linux (this includes X86-64 emulators)

Some parts of a Cartesi Machine execution public,
some parts private

cartesi

https://qithub.com/stskeeps/poc-cartesi-r0

https://qithub.com/stskeeps/machine-emulato
r/tree/sts/experimental/risczero-uarch

Thanks.

Twitter/Telegram/Bluesky: @stskeeps
Further discussion: cartesi.io discord

Special thanks go to Yelyzaveta Dymchenko for
running the first cycles of a RV64GC using rvemu
on RiscZero in October 2022

cartesi.io

P11

https://github.com/stskeeps/poc-cartesi-r0
https://github.com/stskeeps/machine-emulator/tree/sts/experimental/risczero-uarch
https://github.com/stskeeps/machine-emulator/tree/sts/experimental/risczero-uarch

