
cartesi.io

Bringing ZK
verifiers to
Bitcoin using
BitVM - ?

Carsten Munk 8 / 11 / 2023

Warning: this is all totally beyond bleeding edge and should really not be
attempted at home without protective gear and sufficient mental health
insurance

cartesi.io

(Taking basis from RiscZero terminology)
- Input the VM/circuit hash

- Input the proof

- Input the committed data (journal)

- Compute the verification that the journal is proven by the proof
as having been done by the circuit/program with certain hash

- Return true/false

- It’s probably a larger computation / large amount of instruction
steps

Aim of this talk is to give you a baseline to potentially develop ZK
verification on Bitcoin and present a few building blocks how it
probably can done.

In order to do ZK verification..

cartesi.io

- Two stacks - main and alternative stack

- Stack contains byte vectors (0 to max 520b in length)

- Stack max 1000 elements

- if/notif/else/endif structures

- Stack operations, the usual + stack depth + pick X element
on stack + some specialist ones

- equal/not equals

- No loops/jumps

- 32-bit signed integer arithmetic [4 byte vector] but no 32-bit
XOR/AND/INVERT/OR, DIV or MOD or bit shifts

- SHA256, SHA1, RIPEMD160. Some signature checking
opcodes.

- But cannot concatenate two byte vectors (disabled opcodes)
- OP_CAT - so no merkle tree verification. A lot of “useful”
opcodes were disabled by Satoshi Nakomoto in a panic.

- https://en.bitcoin.it/wiki/Script

Bitcoin Script 101

https://en.bitcoin.it/wiki/Script

cartesi.io

- You can submit a certain input of data to a Bitcoin address and
‘spend’ the value in that address if the script that hashes to that
script address allows you (have to send script along on spend)

- Taproot (upgrade to Bitcoin which was deployed) script
addresses can contain a merkle tree of scripts and you pick a
‘path’ (merkle proof) at tx submission to pick which script to
execute

- It also enables 4MB script sizes

- You can send stack elements in the transaction to be put on the
stack when the script executes

Script addresses

cartesi.io

- https://bitvm.org/bitvm.pdf - Introduced October 9, 2023 by Robin
Linus from Zerosync

- BitVM introduces three new concepts:

- Bit Commitments (a way to keep a value same across multiple
Bitcoin transactions)

- Logic Gate Commitments

- (Binary) Circuit Commitments

- Almost 1000 people in the BitVM telegram group - it has really
captured the imagination of many

BitVM

https://bitvm.org/bitvm.pdf

cartesi.io

- Enables Write-once memory across multiple
transactions

- Why is this important? Cross-transaction state was
not previously possible in Bitcoin

- Party which commits to a certain value is
penalized if the other commitment value is opened
within a certain timeframe

- Henceforth OP_BITCOMMITMENT - The opcode
consumes two hashes and a preimage of one of
the hashes. It puts a bit value on the stack,
according to which hash is matched by the
preimage.

Bit commitments -
the first giant leap

cartesi.io

- Executing this script requires to reveal values for the bit
commitments A, B, and C, such that A NAND B = C holds

- Beyond NAND, can be
bitwise AND (OP_BOOLAND)
OR (OP_BOOLOR)
XOR (OP_NUMNOTEQUALS)
NOT (OP_NOT)

Logic gate commitments

cartesi.io

- Combining many gates together, with
the circuit having inputs and outputs
that are bit commitments (individual
gates don’t need)

- So you also can execute a circuit with
input based on output from another
circuit

- Not all need to be logic gates, for
example, Bitcoin Script can do 32-bit
addition just fine

- Handwriting circuits in Bitcoin Script.. or

(Binary) circuit
commitments

cartesi.io

- HyCC (https://github.com/stskeeps/HyCC) is old academic
software that uses bounded model checking (CBMC tool) to
generate boolean circuits from C into various circuit description
formats (incl. Bristol Circuits and SCD)

- https://github.com/stskeeps/bristol2btcscript is a script made by
me that converts SCD format into Bitcoin Script

- Current Restrictions: amount of inputs, amount of outputs, amount
of gate outputs active on stack

- Future: Compile such that single circuit execution/evaluation can
extend over multiple bitcoin scripts using bit commitments; cut
circuits to fit within scripts.

Compiling C to circuits to
Bitcoin script suitable for bit
commitments

https://github.com/
https://github.com/stskeeps/bristol2btcscript

cartesi.io

- By executing circuits and evaluating a true/false bit in the end to allow or disallow a
spend.

- How? When setting up initial script address, Prover and verifier signs a number of 2of2
transactions that forces prover to move the value locked in the computation through the
computation step transactions. Verifier can be a m-of-m signature, so we rely on one
honest party in the set of m verifiers

- At end of computation step, prover is required to wait a week for challenge of abuse of
bit commitments, unless verifier agrees already

- Note: if you have everything in same script (big big expensive script) you don’t need bit
commitments (maybe able to fit ZK verifier in the future?) or to wait

- A verifier can then step in to challenge abuse of bit commitments (different value
opened in different scripts) [and ensure prover can’t spend the input, but exact
mechanism TBA]

- After a week, the prover can spend the value guarded by the script how he pleases if he
wasn’t caught doing fraud

- We can now run some (larger) amount of computation on Bitcoin, implemented with
hand written circuits or (bounded loops) C compiled to Bitcoin script! [might be a ZK
verifier!]

The hard way: do all computation on Bitcoin

cartesi.io

- If we can’t run a complete ZK verification within Bitcoin script currently
with current constraints, we probably need a virtual machine of sorts
made as one or more connected circuits/scripts and then:

- Use optimistic proving: find a particular machine state of disagreement
and run a single step of the computation on Bitcoin

- Why do we possibly need ZK? Because of limits on inputs/commitment
amounts/etc

Virtual machine and optimistic
proving

cartesi.io

- As of a few days ago, the BitVM team brought a
Blake3 hash function circuit to Bitcoin script, that
fits within reasonably computable transaction size

- What does this mean?

- We can now do merkle proof verification in Bitcoin
Script!

- We can take the entire state of a virtual machine,
put for example every word, or every page, into a
merkle tree and prove the transition of:
- Previous state + a memory write ⇒ new state

Machine state
merkelization

cartesi.io

- Between a prover and a verifier there’s really
three scenarios:

- Prover and verifier agrees on computation result
and no need to prove it on chain (most cases)

- Verifier ‘times out’ while doing the protest and
prover

- Prover does fraud/times out because verifier
forces him to prove it and his fraud gets caught

- In case of fraud, or verifier wasting prover’s time,
a deposit can be slashed

Dispute or not

cartesi.io

- Assuming an agreed starting state (virtual
machine state hash)

- We agree that the ‘max’ computation cycle as
well

- We then conduct a bit of dance: a binary search
on-chain where prover posts his belief of the
state at a particular cycle of execution and the
verifier states his/her agreement or
disagreement to that state

- The binary search will then result the state hash
where both parties agree and the subsequent
state they disagree about, in log2(max steps), so
for 3 million steps, that’d be 21 bisections,
challenge-and-respond

- This bisection dance can be enforced with 2of2
signed transactions like before

Bisection

cartesi.io

- Once we have found an agreed state hash and one which there
is disagreement about, we can then run that one single cycle in
our “VM” on chain

- Prover sends ‘access logs’ + proofs to the step

- The state accesses (memory) made during the step are
checked against the agreed state hash using merkle (multi?)
proofs

- The state writes done to the state during the step should then
result in a new state hash

- This new state can then be compared against what prover
claimed it should be and conclude the winner of the dispute

- This step could be anything that will fit within reasonable
Bitcoin computation - and the BitVM team is currently working
on a ‘toy’ VM for this to document how this works

Step

cartesi.io

- An open standard instruction set architecture -
royalty-free open source license

- Support in GCC, LLVM/clang, tooling, Rust, etc

- 32-bit and 64-bit variants (RV32, RV64)

- Instruction set variants underneath:

- “I” - 32 registers or “E” - 16 registers

- “F” “D” floating point support

- “M” multiplication and division

- “GC” is “general purpose” – runs Ubuntu

- Super simple to implement for basic instructions,
lots of test cases and well written
implementations

- Can re-use existing RISC-V compilers for
development

- Can re-use existing test cases for the VM (much
less time to production)

RISC-V

cartesi.io

- Typical reaction of communities in new computing
environments is to implement custom VMs, tooling,
compilers and it leaves a multi-year trail of dead projects
and broken developer experience behind it

- Cartesi provides already now a general purpose RV64GC
VM - it runs Ubuntu Linux in a deterministic manner

- Cartesi has a microarchitecture C++ code implementing
RV64I that is suitable for circuit implementation

- All Cartesi state is in memory, making it ideal for bisection

- Been around for a few years already, not a new VM

- Bisection already done for Ethereum

Why Cartesi and BitVM

cartesi.io

- We took the microarch (uarch) implementation from
Cartesi Machine and translated it to C & built it with HyCC

- Memory read/writes through access logs

- We managed to run a single RV64I step in ‘gates: 74045,
depth: 504’

- We then validated the circuit with the -existing- uarch test
logs running RV64I tests; and made a script that
converted from test JSON to HyCC circuit simulator input
style

- And all microarchitecture tests passed!
- Next steps are dividing the circuit into

fetch/decode/execute/memory access/register writeback
steps that can be possibly bisected over on chain

Making a RV64I circuit

cartesi.io

- Hand-write a boolean circuit converted to bitcoin script;
and linking to other bitcoin script ‘circuits’

- Compile verifier in C to a boolean circuit a singular Bitcoin
script that fits within multiple transactions (requires bit
commitment challenge times)

- .. or single transaction (no challenge time), but large
transaction

- Run it using BitVM’s VM

- Implement a toy VM that emulates certain parts of the ZK
verification process and bisect over that

- Base on a (near future?) optimistically proven RV64I VM
and compile your ZK verifier to RV64I embedded
environment (from Rust/C/C++/etc)

- Compile to RV64GC and run your verifier inside a Linux
environment that bisects down to a RV64I step that is
proven to (could literally build the RiscZero verifier as is in
Rust to it)

Multiple ways to do a ZK verifier

cartesi.io

- Exact structuring of Bitcoin transactions (I’m not an expert)

- How to extend this to multiple verifiers

- Catching lies not liars in optimistic proving: https://arxiv.org/abs/2212.12439

- OP_CAT discussion about potentially added as a softfork to Bitcoin

- Using taproot script as lookup tables

Things I didn’t cover

https://arxiv.org/abs/2212.12439

cartesi.io

- Me: https://t.me/stskeeps / @stskeeps on X

- BitVM paper: https://bitvm.org/bitvm.pdf

- BitVM github: https://github.com/BitVM

- Cartesi Machine: https://docs.cartesi.io/cartesi-machine/

- RV64I circuit work: https://github.com/stskeeps/cartesi-circuit

- BitVM telegram: https://t.me/bitVM_chat

More information

https://t.me/stskeeps
https://bitvm.org/bitvm.pdf
https://docs.cartesi.io/cartesi-machine/
https://t.me/bitVM_chat

