wa cartesi

Bringing ZK
verifiers to
Bitcoin using
BitVM - ?

Warning: this is all totally beyond bleeding edge and should really not be
attempted at home without protective gear and sufficient mental health
insurance

cartesi.io Carsten Munk 8/11/2023

wa cartesi

In order to do ZK verification..

(Taking basis from RiscZero terminology)
- Input the VM/circuit hash
- Input the proof
- Input the committed data (journal)

- Compute the verification that the journal is proven by the proof
as having been done by the circuit/program with certain hash

= Return true/false

- It's probably a larger computation / large amount of instruction
steps

Aim of this talk is to give you a baseline to potentially develop ZK

verification on Bitcoin and present a few building blocks how it
probably can done.

cartesi.io

wa cartesi

Bitcoin Script 101

cartesi.io

Two stacks - main and alternative stack

Stack contains byte vectors (0 to max 520b in length)
Stack max 1000 elements

if/notif/else/endif structures

Stack operations, the usual + stack depth + pick X element
on stack + some specialist ones

equal/not equals
No loops/jumps

32-bit signed integer arithmetic [4 byte vector] but no 32-bit
XOR/AND/INVERT/OR, DIV or MOD or bit shifts

SHA256, SHA1, RIPEMD160. Some signature checking
opcodes.

But cannot concatenate two byte vectors (disabled opcodes)

- OP_CAT - so no merkle tree verification. A lot of “useful”
opcodes were disabled by Satoshi Nakomoto in a panic.

https://en.bitcoin.it/wiki/Script

https://en.bitcoin.it/wiki/Script

wa cartesi

Script addresses

cartesi.io

You can submit a certain input of data to a Bitcoin address and

‘spend’ the value in that address if the script that hashes to that
script address allows you (have to send script along on spend)

Taproot (upgrade to Bitcoin which was deployed) script
addresses can contain a merkle tree of scripts and you pick a
‘path’ (merkle proof) at tx submission to pick which script to
execute

It also enables 4MB script sizes

You can send stack elements in the transaction to be put on the
stack when the script executes

wa cartesi

BitVM

cartesi.io

https://bitvm.org/bitvm.pdf - Introduced October 9, 2023 by Robin
Linus from Zerosync

BitVM introduces three new concepts:

Bit Commitments (a way to keep a value same across multiple
Bitcoin transactions)

Logic Gate Commitments
(Binary) Circuit Commitments

Almost 1000 people in the BitVM telegram group - it has really
captured the imagination of many

BitVM: take:

Think of a box that
solves any math problem

That's BitVM for Bitcoin

Bitcoin: checl
right or

https://bitvm.org/bitvm.pdf

wa cartesi

Bit commitments -

Stack Elements

the first giantleap

- Enables Write-once memory across multiple

transactions Witness Script

- Why is this important? Cross-transaction state was
not previously possible in Bitcoin

OP EQUALVERIFY
- Party which commits to a certain value is
penalized if the other commitment value is opened

within a certain timeframe
- Henceforth OP_BITCOMMITMENT - The opcode OP_EQUALVERIFY
consumes two hashes and a preimage of one of

the hashes. It puts a bit value on the stack,
according to which hash is matched by the

preimage.

cartesi.io

'tl cartesi OP_BITCOMMITMENT
Logic gate commitments

- Executing this script requires to reveal values for the bit OP_BITCOMMITMENT
commitments A, B, and C, such that A NAND B = C holds

- Beyond NAND, can be
bitwise AND (OP_BOOLAND)
OR (OP_BOOLOR)
XOR (OP_NUMNOTEQUALS)
NOT (OP_NOT)

cartesi.io

OP EQUALVERIFY

wa cartesi

(Binary) circuit
commitments

- Combining many gates together, with
the circuit having inputs and outputs
that are bit commitments (individual
gates don't need)

- S0 you also can execute a circuit with
input based on output from another
circuit

- Not all need to be logic gates, for

example, Bitcoin Script can do 32-bit
addition just fine

- Handwriting circuits in Bitcoin Script.. or

cartesi.io

wa cartesi

Compiling C to circuits to
Bitcoin script suitable for bit
commitments

- HyCC (https://dithub.com/stskeeps/HyCC) is old academic
software that uses bounded model checking (CBMC tool) to
generate boolean circuits from C into various circuit description
formats (incl. Bristol Circuits and SCD)

- https://qithub.com/stskeeps/bristol2btcscript is a script made by
me that converts SCD format into Bitcoin Script

- Current Restrictions: amount of inputs, amount of outputs, amount

) How do we compile programs to circuits?
of gate outputs active on stack ptie prog 0

- Future: Compile such that single circuit execution/evaluation can
extend over multiple bitcoin scripts using bit commitments; cut - Eliminate mutation

circuits to fit within scripts. - Eliminate branches -
. Unroll loops Similar to

. Inline function calls Bounded Model

CRIRESLIE . Functionalize arrays Checking!

https://github.com/
https://github.com/stskeeps/bristol2btcscript

wa cartesi

The hard way: do all computation on Bitcoin

- By executing circuits and evaluating a true/false bit in the end to allow or disallow a
spend.

- How? When setting up initial script address, Prover and verifier signs a number of 20f2
transactions that forces prover to move the value locked in the computation through the
computation step transactions. Verifier can be a m-of-m signature, so we rely on one
honest party in the set of m verifiers

- At end of computation step, prover is required to wait a week for challenge of abuse of
bit commitments, unless verifier agrees already

- Note: if you have everything in same script (big big expensive script) you don’t need bit
commitments (maybe able to fit ZK verifier in the future?) or to wait

- A verifier can then step in to challenge abuse of bit commitments (different value
opened in different scripts) [and ensure prover can’t spend the input, but exact
mechanism TBA]

- After a week, the prover can spend the value guarded by the script how he pleases if he
wasn’t caught doing fraud

- We can now run some (larger) amount of computation on Bitcoin, implemented with
carteslio hand written circuits or (bounded loops) C compiled to Bitcoin script! [might be a ZK
verifier!]

wa cartesi

Virtual machine and optimistic
provmg

If we can’'t run a complete ZK verification within Bitcoin script currently
with current constraints, we probably need a virtual machine of sorts
made as one or more connected circuits/scripts and then:

- Use optimistic proving: find a particular machine state of disagreement
and run a single step of the computation on Bitcoin

- Why do we possibly need ZK? Because of limits on inputs/commitment
amounts/etc

cartesi.io

wa cartesi

Machine state
merkelization

- Asof afew days ago, the BitVM team brought a
Blake3 hash function circuit to Bitcoin script, that
fits within reasonably computable transaction size

= What does this mean?

- We can now do merkle proof verification in Bitcoin
Script!

- We can take the entire state of a virtual machine,
put for example every word, or every page, into a
merkle tree and prove the transition of:

- Previous state + a memory write = new state

cartesi.io

239

241
242

249

267

//
// Input: A 64-byte message in the unlocking script
//

bytesFromText('OP_CAT can be used as a tool to liberate and protect people &'),

//

//
// Program: A Blake3 hash lock
//

’

// Sanitize the 64-byte message
sanitizeBytes(64),

// Compute Blake3
blake3(),

// Uncomment the following line to inspect the resulting hash
// ‘debug;',

// Push the expected hash onto the stack
bytesFromHex('e72f095723bff66ad953e65b64bdf956aceballb628d7a44079a78e7dbff2654"),

// Verify the result of Blake3 is the expected hash
u256_equalverify,

wa cartesi

Dispute or not

- Between a prover and a verifier there’s really . p
three scenarios:

- Prover and verifier agrees on computation result
and no need to prove it on chain (most cases)

- Verifier times out’ while doing the protest and
prover

= Prover does fraud/times out because verifier
forces him to prove it and his fraud gets caught

- Incase of fraud, or verifier wasting prover’s time,
a deposit can be slashed

cartesi.io

wa cartesi

Bisection

cartesi.io

Assuming an agreed starting state (virtual
machine state hash)

We agree that the ‘max’ computation cycle as
well

We then conduct a bit of dance: a binary search
on-chain where prover posts his belief of the
state at a particular cycle of execution and the
verifier states his/her agreement or
disagreement to that state

The binary search will then result the state hash
where both parties agree and the subsequent
state they disagree about, in log2(max steps), so
for 3 million steps, that'd be 21 bisections,
challenge-and-respond

This bisection dance can be enforced with 20f2
signed transactions like before

wa cartesi

Step

cartesi.io

Once we have found an agreed state hash and one which there
is disagreement about, we can then run that one single cycle in
our “VM” on chain

Prover sends ‘access logs’ + proofs to the step

The state accesses (memory) made during the step are
checked against the agreed state hash using merkle (multi?)
proofs

The state writes done to the state during the step should then
result in a new state hash

This new state can then be compared against what prover
claimed it should be and conclude the winner of the dispute

This step could be anything that will fit within reasonable
Bitcoin computation - and the BitVM team is currently working
on a toy’ VM for this to document how this works

wa cartesi

RISC-V

- Anopen standard instruction set architecture -
royalty-free open source license

- Support in GCC, LLVM/clang, tooling, Rust, etc
- 32-bit and 64-bit variants (RV32, RV64)

- Instruction set variants underneath:

- " - 32 registers or “E” - 16 registers

_ T R ﬂoating pOint SUpport

- “M” multiplication and division
- “GC”is “general purpose” - runs Ubuntu

- Super simple to implement for basic instructions,
lots of test cases and well written =
implementations

- Can re-use existing RISC-V compilers for
development

cantssiio Can re-use existing test cases for the VM (much
less time to production)

wa cartesi

Why Cartesi and BitVM

cartesi.io

Typical reaction of communities in new computing
environments is to implement custom VMs, tooling,
compilers and it leaves a multi-year trail of dead projects
and broken developer experience behind it

Cartesi provides already now a general purpose RV64GC
VM - it runs Ubuntu Linux in a deterministic manner

Cartesi has a microarchitecture C++ code implementing
RV64I that is suitable for circuit implementation

All Cartesi state is in memory, making it ideal for bisection
Been around for a few years already, not a new VM

Bisection already done for Ethereum

wa cartesi

Making a RVé4l circuit

cartesi.io

We took the microarch (uarch) implementation from
Cartesi Machine and translated it to C & built it with HyCC

Memory read/writes through access logs

We managed to run a single RV64l step in ‘gates: 74045,
depth: 504’

We then validated the circuit with the -existing- uarch test
logs running RV64| tests; and made a script that
converted from test JSON to HyCC circuit simulator input
style

And all microarchitecture tests passed!

Next steps are dividing the circuit into
fetch/decode/execute/memory access/register writeback
steps that can be possibly bisected over on chain

wa cartesi

Multiple ways to do a ZK verifier

cartesi.io

Hand-write a boolean circuit converted to bitcoin script;
and linking to other bitcoin script ‘circuits’

Compile verifier in C to a boolean circuit a singular Bitcoin
script that fits within multiple transactions (requires bit
commitment challenge times)

.. or single transaction (no challenge time), but large
transaction

Run it using BitVM’s VM

Implement a toy VM that emulates certain parts of the ZK
verification process and bisect over that

Base on a (near future?) optimistically proven RV64| VM
and compile your ZK verifier to RV64l embedded
environment (from Rust/C/C++/etc)

Compile to RV64GC and run your verifier inside a Linux
environment that bisects down to a RV64| step that is
proven to (could literally build the RiscZero verifier as is in
Rust to it)

The function
being
evaluated

Lf(

|

X,

Private
input

ZK-SNARK proves
that the output is
True

l

wa cartesi

Things | didn’t cover

Exact structuring of Bitcoin transactions (I'm not an expert)

- How to extend this to multiple verifiers

- Catching lies not liars in optimistic proving: https://arxiv.org/abs/2212.12439

- OP_CAT discussion about potentially added as a softfork to Bitcoin
- Using taproot script as lookup tables

cartesi.io

https://arxiv.org/abs/2212.12439

wa cartesi

More information

cartesi.io

Me: https://t.me/stskeeps /| @stskeeps on X

BitVM paper: https://bitvm.org/bitvm.pdf
BitVM github: https://github.com/BitVM

Cartesi Machine: https://docs.cartesi.io/cartesi-machine

RV64l circuit work: https://github.com/stskeeps/cartesi-circuit

BitVM telegram: https://t.me/bitVM_chat

https://t.me/stskeeps
https://bitvm.org/bitvm.pdf
https://docs.cartesi.io/cartesi-machine/
https://t.me/bitVM_chat

